Search results for "nutrition soufrée"

showing 2 items of 2 documents

Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis

2014

International audience; Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P and S plant nutrition, but the mechanisms behind these exchang…

0106 biological sciencesRhizophagus irregularisS deficiencyTranscription Genetic[SDV]Life Sciences [q-bio]FungusPlant Sciencelcsh:Plant culture01 natural sciencesAM interactionrhizophagus irregularissulfur deficiencyTranscriptomeCell wall03 medical and health sciencesBotanymedicago truncatula;transcriptome;S deficiency;AM interaction;rhizophagus irregularis[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110Original Research ArticleGene030304 developmental biology2. Zero hungerAbiotic component0303 health sciencescarencebiologyarbuscular mycorrhizafungifood and beveragesmedicago truncatulabiology.organism_classificationMedicago truncatulaArbuscular Mycorrhizal Symbiosis[SDE]Environmental SciencesPlant nutritionnutrition soufréetranscriptome010606 plant biology & botany
researchProduct

Effet d'une carence en soufre combinée à un stress hydrique chez le pois protéagineux : Etude des mécanismes moléculaires mis en jeu dans les organes…

2019

Pea (Pisum sativum L.) is a grain legume crop that produces seeds rich in proteins for food and feed and, thanks to its symbiosis with nitrogen-fixing bacteria, enriches the soil with nitrogen. The wider development of pea cultivation is therefore a major agroecological challenge. Water stress combined with sulfur deficiencies in soils (S is a macroelement necessary for plant defense reactions) are two abiotic stresses that interact in the current context of climate change. However, the molecular mechanisms underlying pea adaptation to water stress and their modulation by sulfur nutrition remain to be elucidated. The objectives of this thesis were, first, to describe the impact of an intera…

FeuillesLeavesSécheresseNutrition soufréeDroughtSeeds[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologySulfur NutritionGraines
researchProduct